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The translational addition theorem for cylindrical wave functions in conjunction with

the appropriate orthogonal series expansions and the pertinent boundary conditions are

employed to develop an exact 3D elasticity solution for free vibrations of a simply (shear

diaphragm) supported elastic circular cylinder of finite length with an eccentrically

located inner circular cavity. The frequency spectrum plots of the first several

eigenfrequencies are presented in a wide range of dimensionless eccentricities for

selected length-to-radius and inner–outer radius ratios. Also, a detailed study on the 2D

free vibration characteristics of an infinite eccentric cylinder is included. The numerical

results describe the imperative influence of cavity eccentricity, mode type, and radii and

length ratios on the vibrational characteristics of the hollow cylinder. It is observed that

the introduction of bore eccentricity causes not only an increase in the number of

resonant frequencies through the splitting of degenerate modes of the unperturbed

problem, but also changes the appearance order of natural vibration modes. The

accuracy of solutions is checked through appropriate convergence studies, and the

validity of results is established with the aid of a commercial finite element package as

well as by comparison with the data in the existing literature.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Many of studies on the dynamic behavior of cylindrical shells in the literature are based on classical or thin-shell
theories. These theories utilize the simplifying assumptions of Kirchhoff–Love’s hypothesis (i.e., ignorance of the transverse
stress and strain components), making them highly inadequate for the analysis of even slightly thick shells. In recent years,
the refinement of thin-shell theories has resulted in a number of the so-called higher order shell theories [1]. The higher
order shell theories are better than the thin-shell theories for the analysis of slightly thick shells but are still inadequate for
the analysis of moderately thick shells. This makes the use of 3D theory of elasticity for dynamic analysis of these
structures inevitable. Computer performance being the only limiting factor, the 3D theory of elasticity can particularly be
used to find accurate values for the natural vibration frequencies of solid or thick hollow elastic cylinders. Such analysis
provides, not only reliable solutions, but also brings out the physical characteristics of the problem [2].

The first known 3D elasticity solution to the free (axisymmetric) vibrations of an infinitely long ideal elastic circular
cylinder with stress-free lateral surface condition was attributed to Pochhammer in 1876 [3]. The 3D vibration problem of a
finite cylinder is much more complicated. Several researchers have carried out such analysis based on the linear equations
of elasticity in order to find accurate natural frequencies for the vibrations of solid or hollow thick isotropic cylinders of
finite length. Among them, Hutchinson and El-Azhari [4] developed a highly accurate semi-analytical method using Bessel
All rights reserved.
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series solution method to solve for the symmetric and unsymmetric vibrations of finite length traction-free hollow
cylinders. Loy and Lam [5] presented an approximate analysis using a layerwise approach to study the vibration of thick
simply supported and clamped circular cylindrical shells. More recently, Mofakhami et al. [6] employed the separation of
variables technique to develop a general semi-analytical solution for the free vibrations of hollow finite cylinders with
‘‘free-end’’ and ‘‘fixed-end’’ boundary conditions.

Axisymmetric structures are commonly used in engineering applications, as computer memory disks, turbine-bladed
disks, ring gyroscopes, machine elements, structural components, gun tubes, pipes, pressure vessels, and so on. It is well
known that when structural irregularities (e.g., dimensional variations, manufacturing tolerances, and material
nonuniformities) are present, the symmetry of the structure is destroyed, the pairs of degenerate eigenfrequencies which
are coincident in the perfectly symmetric case split into two different values, and the mechanical performance may severely
be diminished [7]. Numerous papers in the open literature are devoted to the influence of various types of imperfections or
geometric asymmetries on the vibration characteristics of (nominally) axisymmetric structures. In particular, great efforts
have been spent for quantitative evaluation of the frequency split and modal shape distortion in imperfect rings and
annular-like (eccentric) plates or disks. For example, Khurasia and Rewtant [8] used finite-element method to examine the
effect of presence of an eccentric hole on free vibrations of a thin circular plate. Laura et al. [9] employed Rayleigh–Ritz and
finite element methods to determine the effect of circumferential variations in wall thickness on eigenfrequencies and
axisymmetric modes of a nonuniform ring. Hwang et al. [10] used the Novozhilov’s thin-shell theory and Rayleigh–Ritz
analysis to study the effects of general in-plane cross sectional profile variations of a thin ring on its free vibration
characteristics. More recently, Cheng et al. [7] employed a commercial finite element analysis code along with experimental
modal analysis to study the effects of boundary condition, cutout eccentricity and size and on vibration modes of an annular-
like plate. Also, Zhong and Yu [11] adopted a weak-form quadrature element method to study the flexural free vibrations of a
moderately thick (Mindlin) eccentric annular plate with typical combinations of boundary conditions.

In contrast with the nonuniform ring or eccentric plate (disk) problem, relatively few researchers have addressed the effects
of circumferential wall thickness variation on the vibrational behavior of cylindrical shells (eccentric cylinders). The most
important works directly relevant to the present study shall be briefly reviewed here. Golovchan [12] developed an exact
elasticity solution for the steady forced vibrations of an elastic body that occupies a finite multiply connected 2D region with
circular boundaries. Quantitative results were presented only for low-frequency vibrations of an infinitely long eccentric
cylinder subject to an external or internal pressure load. Tonin and Bins [13] used Love’s thin-shell theory in conjunction with
the Rayleigh–Ritz method to approximate the natural frequencies of a finite length distorted circular cylindrical shell with
circumferential wall thickness variations and shear diaphragm end conditions. Suzuki and Leissa [14,15] employed thin and
thick shell theories in conjunction with power series expansion method to formulate an exact solution procedure for
determining the free vibration frequencies and mode shapes of circular and noncircular (elliptical) cylindrical shells of
circumferentially varying thickness having shear diaphragm end conditions. Kumar and Singh [16] utilized Bezier functions in
Ritz method along with Kirchhoff–Love classical thin-shell theory to study the free vibrations of noncircular (elliptic and oval)
cylindrical shells having a circumferentially varying thickness, with various boundary conditions. They focused on overcoming
the mathematical difficulties associated with mode coupling between the symmetric and antisymmetric vibration modes
caused by variable shell wall curvature and thickness. More recently, Toorani and Lakis [17] used a combination of hybrid finite
element method and the thick shell theory to present a semi-analytical free vibration analysis of laminated, anisotropic, and
circumferentially uniform or nonuniform cylindrical shells with arbitrary boundary conditions.

The above review indicates that while there exists a notable (reasonable) body of literature on free vibrations of
eccentric rings and plates (cylindrical shells with circumferentially varying thickness), rigorous analytic or numerical
solutions for a finite length cylinder with an eccentric inner circular cavity seems to be nonexistent (see Fig. 1). Accordingly,
the main purpose of the current work is to employ the translational addition theorem for cylindrical wave functions along
with the appropriate orthogonal series expansions and the pertinent boundary conditions to develop an exact elasticity
solution for the proposed problem. The eccentric cylindrical components are extensively used as the basic structural
elements in many engineering applications such as machining parts, electric devices, machinery, gun tubes, pipes, pressure
vessels, etc. [18,19]. Thus, a comprehensive dynamic characterization of such structures will provide a real basis for the
design engineer in assessing the suitability of introducing cavities in these elements at each situation. It can particularly
provide guidance on vibration measurement and control, structural parameter identification, occurrence of vibration
localization and damage detection in such structures [7,20]. The proposed model is also of fundamental interest due to its
inherent value as a canonical problem in structural dynamics. Furthermore, the presented exact solution can serve as the
benchmark for comparison to other solutions obtained by the generally restrictive numerical or asymptotic approaches.

2. Formulation

2.1. Basic field equations

The elastic material under consideration is assumed to be linear, macroscopically homogeneous, and isotropic for which
the constitutive equation may be written as

sij ¼ ldij�þ 2m�ij, (1)
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Fig. 1. Problem geometry.
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where dij is Kronecker delta symbol and ðl;mÞ are Lame constants. The problem can be analyzed by means of the standard
methods of elastodynamics. In the absence of body forces, the displacement field is governed by the classical Navier’s
equation [21]

rq
2u

qt2
¼ mr2uþ ðlþ mÞ=ð= � uÞ, (2)

subject to the appropriate boundary conditions. Here, r is the solid material density, and u ¼ ður ;uy;uzÞ is the
vector displacement that can advantageously be expressed as sum of the gradient of a scalar potential and the curl of a
vector potential

u ¼ =jþ=�w, (3)

with the condition = �w ¼ 0. The above decomposition enables us to separate the dynamic equation of motion (2) into the
classical wave equations

c2
pr

2j ¼ €j,

c2
sr

2w ¼ €w, (4)
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where c2
p ¼ ðlþ 2mÞ=r and c2

s ¼ m=r are the propagation velocities of dilatational and distortional waves in the elastic
medium, respectively. On the account of the condition of zero divergence, = �w ¼ 0, only two of the three components
of w are independent. Accordingly, the above system (4) may be reduced to the following fully uncoupled scalar wave
equations [21]

c2
pr

2j ¼ €j,

c2
sr

2c ¼ €c,

c2
sr

2w ¼ €w. (5)

Furthermore, the relevant displacement components in cylindrical coordinates in terms of compressional and shear wave
potentials may simply written as [21]

ur ¼
qj
qr
þ

1

r

qc
qy
þ

q2w
qrqz

,

uy ¼
1

r

qj
qy
�
qc
qr
þ

1

r

q2w
qyqz

,

uz ¼
qj
qz
�

1

r

q
qr

r
qw
qr

� �
þ

1

r2

q2w
qy2

" #
, (6)

and the relevant stress components are

srr ¼ lr2jþ 2m q2j
qr2
þ

q
qr

1

r

qc
qy

� �
þ

q3w
qr2qz

" #
,

szz ¼ lr2jþ 2m q2j
qz2
�

q
qz
ðr2wÞ þ q3w

qz3

" #
,

sry ¼ m 2
q
qr

1
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þ

1
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,

srz ¼ m 2
q2j
qrqz
þ

1

r

q2c
qyqz

þ 2
q3w
qz2qr

�
q
qr
ðr2wÞ

" #( )
. (7)
2.2. Field expansions and boundary conditions

The problem geometry is depicted in Fig. 1. Two cylindrical coordinates systems ðr1; y1; z1Þ and ðr2;y2; z2Þ are introduced
to describe the elastic field within the eccentric cylinder. The cylinder axes are parallel, and z1 ¼ z2 ¼ z. Their origin-to-
origin separation is e ðemax ¼ b� aÞ, and point P is an arbitrary field point within the eccentric cylinder, outside the
cylindrical cavity. Assuming time-harmonic variations, the field expansions for the standing longitudinal and shear waves
within the eccentric cylinder (i.e., the solutions to the wave Eqs. (5)) with respect to the ðr1; y1; zÞ coordinate system may be
written as [21]

jðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

½anmJnðar1Þ þ bnmYnðar1Þ� sinðgzÞeiny1 ,

cðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

½cnmJnðbr1Þ þ dnmYnðbr1Þ� cosðgzÞeiny1 ,

wðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

½enmJnðbr1Þ þ f nmYnðbr1Þ� cosðgzÞeiny1 , (8)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, anm through f nm are unknown modal coefficients, a2 ¼ o2=c2
p � g2, b2

¼ o2=c2
s � g2, Jn and Yn are the

cylindrical Bessel functions of the first and second kind, respectively, and ða; g;bÞ are separation constants. Direct
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substitution of field expansions (8) into the field equations (6) and (7), leads to

urðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmV ½1�1n þ bnmV ½2�1n þ cnmV ½1�2n þ dnmV ½2�2n þ enmV ½1�3n þ f nmV ½2�3nÞ sinðgzÞeiny1 ,

uyðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmV ½1�4n þ bnmV ½2�4n þ cnmV ½1�5n þ dnmV ½2�5n þ enmV ½1�6n þ f nmV ½2�6nÞ sinðgzÞeiny1 ,

uzðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmV ½1�7n þ bnmV ½2�7n þ cnmV ½1�8n þ dnmV ½2�8n þ enmV ½1�9n þ f nmV ½2�9nÞ cosðgzÞeiny1 (9)

and

srrðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmS½1�1n þ bnmS½2�1n þ cnmS½1�2n þ dnmS½2�2n þ enmS½1�3n þ f nmS½2�3nÞ sinðgzÞeiny1 ,

sryðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmS½1�4n þ bnmS½2�4n þ cnmS½1�5n þ dnmS½2�5n þ enmS½1�6n þ f nmS½2�6nÞ sinðgzÞeiny1 ,

srzðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmS½1�7n þ bnmS½2�7n þ cnmS½1�8n þ dnmS½2�8n þ enmS½1�9n þ f nmS½2�9nÞ cosðgzÞeiny1 ,

szzðr1; y1; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðanmS½1�10n þ bnmS½2�10n þ cnmS½1�11n þ dnmS½2�11n þ enmS½1�12n þ f nmS½2�12nÞ sinðgzÞeiny1 , (10)

where the expressions for V ½k�
in
ðrj; g;oÞ ði ¼ 1;2; . . . ;9; j; k ¼ 1;2Þ and S½k�

in
ðrj; g;oÞ ði ¼ 1;2; . . . ;12; j; k ¼ 1;2Þ are given in

Appendix A.
The natural frequencies and the unknown Fourier coefficients may be determined by imposing the proper boundary

conditions. Accordingly, assuming shear diaphragm end conditions [1], and traction-free inner/outer surfaces, one can
write (see Fig. 1)

urðri; yi; z ¼ 0; L;oÞ ¼ uyðri; yi; z ¼ 0; L;oÞ ¼ szzðri;yi; z ¼ 0; L;oÞ ¼ 0, (11a)

srrðr1 ¼ a; y1; z;oÞ ¼ sryðr1 ¼ a; y1; z;oÞ ¼ srzðr1 ¼ a; y1; z;oÞ ¼ 0, (11b)

srrðr2 ¼ b; y2; z;oÞ ¼ sryðr2 ¼ b; y2; z;oÞ ¼ srzðr2 ¼ b; y2; z;oÞ ¼ 0, (11c)

where i ¼ 1;2. Using first two of (9) and last of (10) in satisfaction of the boundary conditions (11a) leads to the simple
condition g ¼ gm ¼ mp=L ðm ¼ . . . ;�2;�1;0;1;2; . . . ; Þ. Also, using (10), enforcement of the inner surface boundary
condition (11b) leads to the following equations:

anmS½1�1nmða;oÞ þ bnmS½2�1nmða;oÞ þ cnmS½1�2nmða;oÞ þ dnmS½2�2nmða;oÞ þ enmS½1�3nmða;oÞ þ f nmS½2�3nmða;oÞ ¼ 0,

anmS½1�4nmða;oÞ þ bnmS½2�4nmða;oÞ þ cnmS½1�5nmða;oÞ þ dnmS½2�5nmða;oÞ þ enmS½1�6nmða;oÞ þ f nmS½2�6nmða;oÞ ¼ 0,

anmS½1�7nmða;oÞ þ bnmS½2�7nmða;oÞ þ cnmS½1�8nmða;oÞ þ dnmS½2�8nmða;oÞ þ enmS½1�9nmða;oÞ þ f nmS½2�9nmða;oÞ ¼ 0, (12)

where n;m ¼ . . . ;�2;�1;0;1;2; . . . ; and S½k�
inm
ðrj;oÞ ¼ S½k�

in
ðrj; gm;oÞ; ði ¼ 1;2; . . . ;12; j; k ¼ 1;2Þ. Satisfaction of the outer

boundary condition (11c) is far more complicated, and will be achieved next by application of the translational addition
theorem for cylindrical wave functions.

2.3. Translational addition theorem

Analytical solutions of interior or exterior boundary value problems in various fields such as potential theory,
elastodynamics, acoustics and electromagnetism are strictly dependent on the shape of boundaries. In particular, when
multiple interfaces are present in a wave field, there is an interaction between them due to cross scattering. Many problems
involve wave fields of one characteristic shape (coordinate system) that interact with a boundary of some other shape
(coordinate system). So it is difficult to satisfy the boundary conditions on that surface. There exists, however, a particular
class of mathematical relationships called translational addition theorems that circumvents this difficulty in many cases by
allowing one to study various wave fields with respect to a common origin. To fulfill orthogonality in the current problem,
we shall express the cylindrical wave functions of the first coordinate system ðr1;y1; zÞ in terms of cylindrical wave
functions of the second coordinate system ðr2; y2; zÞ by application of the classical form of translational addition theorem
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for cylindrical Bessel functions [22]:

Jnðkr1Þ

Ynðkr1Þ

( )
einy1 ¼

X1
k¼�1

Jn�kðkeÞ
Jnðkr2Þ

Ynðkr2Þ

( )
eiky2 , (13)

where eor2 ð0 � r2 � bÞ, and noting emax ¼ b� a, when later imposing the relevant boundary conditions at r2 ¼ b, the
condition eor2 ¼ b will be clearly satisfied. The above expansion may advantageously be utilized in (8) in order to express
the field potentials with respect to the second coordinate system, i.e.,

jðr2; y2; z;oÞ ¼
X1

m¼�1

X1
n¼�1

½AmnJnðar2Þ þ BmnYnðar2Þ�e
iny2 sinðgmzÞ,

cðr2; y2; z;oÞ ¼
X1

m¼�1

X1
n¼�1

½CmnJnðbr2Þ þ DmnYnðbr2Þ�e
iny2 cosðgmzÞ,

wðr2; y2; z;oÞ ¼
X1

m¼�1

X1
n¼�1

½EmnJnðbr2Þ þ FmnYnðbr2Þ�e
iny2 cosðgmzÞ, (14)

where

Anm ¼
X1

k¼�1

akmJk�nðaeÞ,

Bnm ¼
X1

k¼�1

bkmJk�nðaeÞ,

Cnm ¼
X1

k¼�1

ckmJk�nðbeÞ,

Dnm ¼
X1

k¼�1

dkmJk�nðbeÞ,

Enm ¼
X1

k¼�1

ekmJk�nðbeÞ,

Fnm ¼
X1

k¼�1

f kmJk�nðbeÞ (15)

and one should note that the index ‘‘k’’ has been interchanged with index ‘‘n’’ for convenience. Direct substitution of field
expansions (14) into the field equations (7), leads to

srrðr2; y2; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðAnmS½1�1nm þ BnmS½2�1nm þ CnmS½1�2nm þ DnmS½2�2nm þ EnmS½1�3nm þ FnmS½2�3nmÞ sinðgmzÞeiny2 ,

sryðr2; y2; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðAnmS½1�4nm þ BnmS½2�4nm þ CnmS½1�5nm þ DnmS½2�5nm þ EnmS½1�6nm þ FnmS½2�6nmÞ sinðgmzÞeiny2 ,

srzðr2; y2; z;oÞ ¼
X1

m¼�1

X1
n¼�1

ðAnmS½1�7nm þ BnmS½2�7nm þ CnmS½1�8nm þ DnmS½2�8nm þ EnmS½1�9nm þ FnmS½2�9nmÞ cosðgmzÞeiny2 . (16)

Next, imposing the outer surface condition (11c), while keeping in mind the orthogonality of transcendental functions,
leads to the following complementary equations:

AnmS½1�1nmðb;oÞ þ BnmS½2�1nmðb;oÞ þ CnmS½1�2nmðb;oÞ þ DnmS½2�2nmðb;oÞ þ EnmS½1�3nmðb;oÞ þ FnmS½2�3nmðb;oÞ ¼ 0,

AnmS½1�4nmðb;oÞ þ BnmS½2�4nmðb;oÞ þ CnmS½1�5nmðb;oÞ þ DnmS½2�5nmðb;oÞ þ EnmS½1�6nmðb;oÞ þ FnmS½2�6nmðb;oÞ ¼ 0,

AnmS½1�7nmðb;oÞ þ BnmS½2�7nmðb;oÞ þ CnmS½1�8nmðb;oÞ þ DnmS½2�8nmðb;oÞ þ EnmS½1�9nmðb;oÞ þ FnmS½2�9nmðb;oÞ ¼ 0, (17)

for n;m ¼ . . . ;�2;�1;0;1;2; . . . .
Now, the simultaneous solutions of infinite-order systems (12) and (17) are required for complete dynamic

characterization of the problem. These equations may advantageously be truncated into square-matrix form by setting
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ðn ¼ �N; . . . ;�2;�1;0;1;2; . . . ;NÞ in (12) and using ðk ¼ �N; . . . ;�2;�1;0;1;2; . . . ;NÞ in (15) in conjunction with (17), to
obtain

Smcm ¼ 0 (18)

where m ¼ . . . ;�2;�1;0;1;2; . . . ; Sm is a ð6N þ 1Þ � ð6N þ 1Þ square matrix that contains extremely complicated frequency-
dependent parameters which multiply the modal vector cm, and

cm ¼ ½a�Nm; b�Nm; c�Nm; d�Nm; e�Nm; f�Nm; að�Nþ1Þm; bð�Nþ1Þm; cð�Nþ1Þm; dð�Nþ1Þm; eð�Nþ1Þm; f ð�Nþ1Þm;

. . . ; a0m; b0m; c0m; d0m; e0m; f 0m; . . . ; aNm; bNm; cNm; dNm; eNm; f Nm�
T (19)

Finally, for nontrivial solutions of (18), the corresponding determinant, jSmj, must be set equal to zero, leading to the so-
called frequency equation. The resonant frequencies are obtained by searching for the real roots of the frequency equation.
Also, for the sake of completeness, the complete derivation of the 2D elasticity solution for the infinite eccentric cylinder is
presented in Appendix B. This completes the necessary background required for exact analysis of the problem. Next, we
consider some numerical examples.

3. Numerical results

In order to illustrate the nature and general behavior of solution, we consider a number of numerical examples in this
section. A Mathematica code was constructed for numerical treatment of the system (18), i.e., to calculate the resonance
frequencies and to determine the unknown Fourier coefficients (mode shapes) as a function of the dimensionless (cavity)
eccentricity parameter ē ¼ ðb� aÞ=b. In particular, a simple and very efficient root finding technique based on the bisection
approach [23] is employed to determine the roots of the characteristic equation ðjSmj ¼ 0Þ by performing tedious frequency
sweeping with extremely small frequency steps for detection of the value of the frequency parameter that causes the
determinant to change sign. This procedure was repeated for all eccentricities using very small eccentricity steps ðDē � 2%Þ.
This way, any remaining missing frequencies were identified and immediately included. Furthermore, after finding the
roots of the characteristic equation by the above mentioned procedure, each root is substituted back into the coefficient
matrix ðSmÞ and the corresponding eigenvector is obtained by using the powerful Mathematica built-in function
NullSpace ½Sm�. The computations were performed on a personal computer with a maximum truncation constant of kmax ¼

nmax ¼ N ¼ 30 to assure convergence in the high frequency range, and also in case of high core eccentricity. The
convergence of numerical solutions were systematically checked in a simple trial and error manner, by increasing the
truncation constant (i.e., including higher number of modes) while looking for steadiness or stability in the numerical value
of the solutions.

Fig. 2a displays the variation of the truncation constant, N, with cavity eccentricity, required for proper convergence of
the first dimensionless (fundamental) natural frequency, O ¼ ob=cp, for selected infinite/finite cylinder geometries
ða=b ¼ 0:9; L=b ¼ 1Þ. It is clear that the issue of convergence is most critical for the highly eccentric cylinders. Fig. 2b
displays the variation of the first several dimensionless natural frequencies, O ¼ ob=cp, with the truncation constant, N, for
selected infinite and finite cylinders of high radii ratio and eccentricity ðē ¼ ðb� aÞ=b ¼ 90%; a=b ¼ 0:9; L=b ¼ 1Þ. Here, it
can be seen that the truncation constant required for adequate convergence of the computations increases with increasing
the magnitude of natural frequency. Also, by performing numerous trial computer runs, it was concluded that the issue of
convergence is most critical for the highly eccentric and high radii ratio cylinders. Moreover, when the cylindrical interfaces
are in very close proximity to each other (i.e., as in the case of the highly eccentric cylinder with a large size cavity), it is
found that increasingly more cylindrical Bessel functions should be included in the addition theorem (13) for proper
convergence of the solutions. The latter observations may also be extended to the effect of cylinder length ratio, L/b, on the
convergence. In particular, it is observed that in the case of shorter cylinders, increasingly more modes are required for
proper convergence of solutions. This may be explained by the fact that as the cylinder length decreases, the magnitude of
the fundamental frequency increases (see Fig. 3), causing a more stringent convergence requirement.

Fig. 3a shows the variation of the first several dimensionless natural frequencies ðO ¼ ob=cpÞ with the eccentricity
parameter ðē ¼ ðb� aÞ=bÞ for selected inner–outer radius ratios ða=b ¼ 0:2;0:5;0:9Þ. The associated circumferential mode
numbers ðnÞ are also specified in each subplot. The modal spectrum of eccentric cylinder exhibits very unique
characteristics. When the cylinder is perfectly axisymmetric (non-eccentric), the vibration modes can appear with repeated
natural frequencies. As eccentricity is introduced, the asymmetry can cause the repeated vibration modes to split into
modes with distinct natural frequencies. In particular, the eccentricity parameter inflicts characteristically different effects
on natural frequencies depending on the radii ratio and mode number. Fig. 3b displays the corresponding 2D mode shapes
for selected eccentricity parameters and mode numbers. It is clear from the first column of Fig. 3b that the deformation
mode shapes for the concentric cylinder ðē ¼ 0Þ may essentially be divided into two general classes: the axisymmetric
modes (i.e., n ¼ 0) and the non-axisymmetric modes (e.g., n ¼ 1;2;3). The latter modes may in turn be separated into
symmetric and antisymmetric ones (denoted by ‘‘S’’ and ‘‘A’’ in Fig. 3b). Accordingly, we note from Fig. 3a that, regardless of
radii ratio, the resonant frequency associated with the axisymmetric mode (n ¼ 0) remains single-valued in the entire
range of eccentricity. In other words, there is a single non-repeated frequency associated with the axisymmetric mode. The
frequency–eccentricity curve associated with the non-axisymmetric modes (n ¼ 1;2;3), on the other hand, bifurcate into



ARTICLE IN PRESS

Truncation constant, N

Truncation constant, N

%
 E

cc
en

tr
ic

ity
 

N
on

di
m

en
si

on
al

 F
re

qu
en

cy
 

4 6 8 10 12 14 16 18 20 22 24
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Finite cylinder

Infinite cylinder

10 12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

0.06677,0.06382

0.141377,0.141376

0.25116

0.39304

0.56703

(n = 2)

(n = 3)

(n = 0)

(n = 3)

(n = 2)

Infinite cylinder

0.39304

0.56703

8 10 12 14 16 18 20 22 24 26 28 30

0.4

0.6

0.8

1

(n = 3, m = 1)

(n = 2, m = 1)

(n = 4, m = 1)

(n = 1, m = 1)

(n = 0, m = 1)

0.32790
0.32816

0.45730
0.45994

0.57188
0.58420
0.66623

0.69172
0.76839

0.79068(n = 5, m = 1)

Finite cylinder (L/b=1)

Fig. 2. (a) The truncation constant required for proper convergence of the first dimensionless (fundamental) natural frequency versus cavity eccentricity,

for selected infinite/finite cylinder geometries ða=b ¼ 0:9; L=b ¼ 1Þ and (b) the variation of the first several dimensionless natural frequencies ðO ¼ ob=cpÞ

with the truncation constant for selected cylinders of high radii ratio ða=b ¼ 0:9Þ and eccentricity ðē ¼ ðb� aÞ=b ¼ 90%Þ.
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two branches as the eccentricity parameter increases. In particular, the initially encountered repeated double roots of the
concentric cylinder ðē ¼ 0Þ exhibits a distinct decoupling of symmetric and anti-symmetric modes [13]. Also, the above
noted separation (bifurcation) seems to be effectively delayed as the radii ratio ða=bÞ increases.
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Another interesting observation is the ‘‘crossover’’ of natural frequency curves corresponding to different mode shapes
for a=b ¼ 0:2 in Fig. 3a (e.g., note the n ¼ 0 and 3 curves trading places at about ē ¼ 30%). This implies that beyond the 30%
eccentricity, the stiffness of structure in the n ¼ 3 vibration mode will decrease in comparison with that in the n ¼ 0 mode.
Moreover, it appears that the largest overall shift in natural frequencies due to the increase in eccentricity occurs for high
mode numbers at highest radii ratio (e.g., n ¼ 2;3 at a=b ¼ 0:9). Lastly, it is should be noted that the circumferential modes
with different wavenumbers are entirely decoupled when the cavity is concentric ðē ¼ 0Þ. These modes get fully coupled as
the cylinder becomes slightly eccentric (see Eq. (18)). As the eccentricity is further increased, progressively more of the
coupled circumferential modes are included in the coefficient matrix Sm ð6N þ 1Þ � ð6N þ 1Þ for proper convergence of the
calculations (see Fig. 2a).

Fig. 4a shows the variation of the first several dimensionless natural frequencies with the eccentricity parameter for
selected length-to-radius and inner–outer radius ratios ða=b ¼ 0:2;0:5;0:9; L=b ¼ 1;2;5Þ. The associated circumferential/
flexural mode numbers (n, m) are also specified in each subplot. Fig. 4b displays the corresponding 3D mode shapes for
selected eccentricity parameters and mode numbers. Comments very similar to above remarks can readily be made. The
main distinctions are as follows. The bifurcation of resonant frequencies with increasing the eccentricity parameter for any
given non-axisymmetric mode is effectively delayed as both the radii ratio (a/b) and length-to-radius ratio (L/b) are
increased. This bifurcation seems to be most visible for the smallest length-to-radius ratio ðL=b ¼ 1Þ, where the largest
separation is noted at the highest eccentricity ðē ¼ 90%Þ. Furthermore, in contrast with the 2D case (Fig. 3a), the frequency
curve crossovers are no longer limited to small radii ratios, and there appears to be an increase in the number of crossover
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points. This number considerably decreases, as the length to radius (radii) ratio is increased (decreased) to
L=b ¼ 5 ða=b ¼ 0:2Þ. Lastly, it appears that the largest overall shift in natural frequencies due to the increase in eccentricity
occurs for highest radii ratio and lowest length ratio (i.e., a=b ¼ 0:9 and L=b ¼ 1).

Finally, in order to check overall validity of the work, we first used our general Mathematica code to compute the

frequency parameters ðO ¼ ob=cpÞ associated with the selected two and 3D mode shapes presented in Figs. 3b and 4b. The

results, which are tabulated next to the corresponding mode shapes in the latter figures, exhibit excellent agreements with
the numerical calculations made by using the commercial finite element code ABAQUS [24]. It is noteworthy that in the
latter validations, about 20,000 eight-noded 2D shell elements (CPS8R) of ABAQUS were used to model the infinite
eccentric cylinder problem, while about 70,000 20-noded brick elements (C3D20R) were used to model the finite eccentric
cylinder. As a further check, we set e ¼ 0 in our general code in order to calculate the normalized resonance frequencies,

Ō ¼ oðaþ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þr=E

q
=2; of a concentric hollow finite elastic cylinder ðn ¼ 0:3; 2ðb� aÞ=ðbþ aÞ ¼ 1:6Þ for selected

mode numbers, ðn;mÞ ¼ ð0;1Þ; ð1;1Þ; ð2;1Þ, and thickness parameters ðb� aÞ=2L ¼ 0:1;0:2;0:4;0:6;0:8;1. The outcome, as
presented in Table 1, exhibit excellent agreements with the natural frequencies given in Tables 6–8 of Ref. [5]. As a last

check, we set a ¼ 37:83; b ¼ 40:75; L ¼ 398:8 ðmmÞ in our general code in order to calculate the resonance frequencies

ðf ¼ o=2pHzÞ of a thin simply supported circular cylindrical steel shell of circumferentially varying wall thickness, for
selected mode numbers and eccentricities ðe ¼ 0;0:5 mmÞ. The result, as presented in Table 2, exhibit fair agreements with
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Table 1

Comparison of frequency parameter calculations ðŌ ¼ oðaþ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Þr=E

q
=2Þ for the concentric hollow cylinder (e ¼ 0) with those in Ref. [5].

(n, m) (b�a)/2L

0.1 0.2 0.4 0.6 0.8 1

(0, 1) Ref. [5]

present

0.11659 0.23254 0.46476 0.69704 0.92935 1.16166

0.11616 0.23232 0.46464 0.69697 0.92929 1.16161

(1, 1) Ref. [5]

present

0.03150 0.11027 0.32509 0.55920 0.79446 1.02738

0.03146 0.11025 0.32508 0.55918 0.79440 1.02724

(2, 1) Ref. [5]

present

0.71819 0.71560 0.74697 0.84477 0.99411 1.17411

0.71752 0.71495 0.74638 0.84425 0.99361 1.17358
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Table 2

Comparison of the calculated resonance frequencies ðf ¼ o=2pHzÞ of a thin simply supported circular cylindrical steel shell of circumferentially varying

wall thickness, for selected mode numbers and eccentricities, with those in Refs. [13,17], along with the ABAQUS results.

(m,n) e ¼ 0 (mm) e ¼ 0.5 (mm)

Ref. [13] Ref. [17] ABAQUS Present Ref. [13] Ref. [17] Present

(1, 2) 1340 1330 1329 1330.7 1347 1335 1335.7

(1, 3) 3553 3529 3509 3515.0 3420 3442 3483.9

(1, 4) 6773 6746 6644 6657.8 6510 6463 6592.5

(2, 2) 2105 2050 2081 2083.5 2071 2043 2076.8

(2, 3) 3740 3698 3692 3699.1 3605 3565 3667.7

(2, 4) 6905 6846 6770 6784.9 6638 6567 6718.2

(3, 2) 3598 3517 3553 3555.5 3542 3469 3544.4
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the natural frequency estimations given in Refs. [13,17], which were calculated by using Rayleigh–Ritz and Hybrid finite
element methods, respectively. Also shown are the corresponding ABAQUS results, which again exhibit excellent
agreements with our exact calculations.

4. Conclusions

This paper presents an exact 3D elasticity series solution for free vibration analysis of a simply supported circular hollow
cylinder of finite length with an eccentric inner circular cavity. A detailed study on the 2D free vibration characteristics of an
infinite eccentric cylinder is also included. The first several resonant frequencies are calculated as a function of cavity
eccentricity for selected geometric parameters. The most important observations are summarized as follows. The issue of
convergence is found to be most critical for the upper modes of highly eccentric cylinders, especially when the radii ratio is
large (large cavity), and/or length to radius ratio is small (short cylinder). The eccentricity parameter inflicts characteristically
different effects on the natural frequencies depending on the mode type, and radii/length ratios. In particular, the calculated
non-repeated eigenfrequency associated with the axisymmetric modes of the concentric cylinder is observed to remain single-
valued through the entire eccentricity range. The repeated double roots (doublet frequencies) corresponding to the non-
axisymmetric modes of the concentric cylinder exhibit distinct decoupling of symmetric and anti-symmetric modes. As the
eccentricity is introduced, the doublet frequencies bifurcate into two distinct branches and the circumferential modes with
different wavenumbers get fully coupled. As the eccentricity is increased, progressively more of the coupled circumferential
modes should be included for proper convergence of the calculations. The bifurcation of resonance frequencies is most
noticeable for the smallest length-to-radius ratio (shortest cylinder), where the largest separation is generally noted at the
highest eccentricity. Also, the frequency splitting is effectively delayed as either the radii and/or length-to-radius ratios are
increased. Another interesting observation is the appearance of ‘‘mode crossing’’ effect in the frequency–eccentricity plots. At
the crossover point, two or more modes may share the same resonance frequency. Across this point, the vibrational stiffness
(frequency ordering) of the involved modes are found to interchange value. The number of such crossovers is observed to
considerably increase as the cylinder length (radii ratio) decreases (increases). Lastly, the largest overall shift in natural
frequencies due to change in eccentricity is found to occur for the highest radii and lowest length ratios.
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Appendix B

The 2D scalar field potentials with respect to the ðr1; y1Þ and ðr2; y2Þ polar coordinate systems are respectively written as

jðr1; y1;oÞ ¼
X1

n¼�1

½anJnðar1Þ þ bnYnðar1Þ�e
iny1 ,

cðr1; y1;oÞ ¼
X1

n¼�1

½cnJnðbr1Þ þ dnYnðbr1Þ� e
iny1 (B.1)

and

jðr2; y2;oÞ ¼
X1

n¼�1

½AnJnðar2Þ þ BnYnðar2Þ� e
iny2 ,

cðr2;y2;oÞ ¼
X1

n¼�1

½CnJnðbr2Þ þ DnYnðbr2Þ�e
iny2 , (B.2)

where a2 ¼ o2=c2
p and b2

¼ o2=c2
s , and

An ¼
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akJk�nðaeÞ,

Bn ¼
X1

k¼�1
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Cn ¼
X1

k¼�1

ckJk�nðbeÞ,

Dn ¼
X1

k¼�1

dkJk�nðbeÞ. (B.3)

Also, one should note that the index ‘‘k’’ has been interchanged with index ‘‘n’’ in (B.2) and (B.3) for convenience. The
relevant stress components with respect to the ðr1; y1Þ and ðr2; y2Þ coordinate systems are, respectively, written as

srrðr1; y1;oÞ ¼
X1

n¼�1

ðanT ½1�1n þ bnT ½2�1n þ cnT ½1�2n þ dnT ½2�2nÞ e
iny1 ,
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iny1 (B.4)

and
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ðAnT ½1�1n þ BnT ½2�1n þ CnT ½1�2n þ DnT ½2�2nÞ e
iny2 ,

sryðr2; y2;oÞ ¼
X1

n¼�1

ðAnT ½1�3n þ BnT ½2�3n þ CnT ½1�4n þ DnT ½2�4nÞ e
iny2 , (B.5)

where

T ½i�1nðrj;oÞ ¼ �2m a
rj
‘½i�n�1ðarjÞ þ 2mnð1þ nÞ

r2
j

� ðlþ 2mÞa2

2
4

3
5‘½i�n ðarjÞ,

T ½i�2nðrj;oÞ ¼ 2imn
b
rj
‘½i�n�1ðbrjÞ �

ð1þ nÞ

r2
j

‘½i�n ðbrjÞ

2
4

3
5,

T ½i�3nðrj;oÞ ¼ 2imn
a
rj
‘½i�n�1ðarjÞ �

ð1þ nÞ

r2
j

‘½i�n ðarjÞ

2
4

3
5,

T ½i�4nðrj;oÞ ¼ 2m b
rj
‘½i�n�1ðbrjÞ þ m �2

nð1þ nÞ

r2
j

þ b2

2
4

3
5‘½i�n ðbrjÞ, (B.6)

where i; j ¼ 1;2, and

‘½i�n ¼
Jn ði ¼ 1Þ

Yn ði ¼ 2Þ

(
.

The pertinent boundary conditions are

srrðr1 ¼ a; y1;oÞ ¼ sryðr1 ¼ a; y1;oÞ ¼ 0, (B.7a)

srrðr2 ¼ b; y2;oÞ ¼ sryðr2 ¼ b; y2;oÞ ¼ 0. (B.7b)

Substitution of (B.4) through (B.5) into the boundary conditions (B.7a,b) leads to

anT ½1�1nða;oÞ þ bnT ½2�1nða;oÞ þ cnT ½1�2nða;oÞ þ dnT ½2�2nða;oÞ ¼ 0,

anT ½1�3nða;oÞ þ bnT ½2�3nða;oÞ þ cnT ½1�4nða;oÞ þ dnT ½2�4nða;oÞ ¼ 0, (B.8a)

and

AnT ½1�1nðb;oÞ þ BnT ½2�1nðb;oÞ þ CnT ½1�2nðb;oÞ þ DnT ½2�2nðb;oÞ ¼ 0,

AnT ½1�3nðb;oÞ þ BnT ½2�3nðb;oÞ þ CnT ½1�4nðb;oÞ þ DnT ½2�4nðb;oÞ ¼ 0 (B.8b)

for n ¼ . . . ;�2;�1;0;1;2; . . . . These equations may advantageously be truncated into square-matrix form by setting
ðn ¼ �N; . . . ;�2;�1;0;1;2; . . . ;NÞ in (B.8a) and using ðk ¼ �N; . . . ;�2;�1;0;1;2; . . . ;NÞ in (B.3) in conjunction with (B.8b),
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to obtain

Td ¼ 0, (B.9)

where T is a ð4N þ 1Þ � ð4N þ 1Þ square matrix that contains extremely complicated frequency-dependent parameters
which multiply the modal vector d, and

d ¼ ½a�N ; b�N ; c�N ;d�N ; a�Nþ1; b�Nþ1; c�Nþ1;d�Nþ1; . . . ; a0; b0; c0; d0; . . . ; aN ; bN ; cN ; dN�
T.
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